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Abstract

The numerical optimization scheme developed previously is successfully applied to optimize the geometric shape
of a horizontal metal-organic chemical vapor deposition reactor for a uniform epitaxial layer of compound material.

The procedure is based on sequential linear programming in which the reactor shape is approximated by the
Chebyshev polynomials. A SIMPLE-type ®nite volume method is used on a general nonorthogonal grid to obtain
the ¯ow characteristics by solving the fully elliptic momentum, energy, and concentration equations. It has been

demonstrated that more than a 30-fold improvement in uniformity can be achieved by this optimization for various
¯ow and geometric conditions considered in this study. The optimization is also found e�ective for mixed
convection ¯ows as the buoyancy driven recirculation may be suppressed completely. # 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Epitaxial layers, the geometric structure of which

imitates that of the solid substrate, have important
bearing on the performance of the electronic or opto-

electronic devices. For instance, the compound semi-
conductors are largely made of the epitaxial-layer-

coated wafer, and its yield depends very much on layer
quality. Metal-organic chemical vapor deposition

(MOCVD), which grows a solid ®lm on the wafer sur-
face from gas phase reactants through pyrolysis and

chemical reaction, is one of the most popular tech-
niques to make an epitaxial layer. The process is

known to produce a layer which is generally uniform

both in thickness and composition. However, for very

demanding applications, needs to improve its quality
to ever higher level have never diminished. Perhaps,

the most critical element that determines the ®lm qual-

ity is the thickness uniformity from the ¯uid-dynamics

perspective as the growth rate in the mass-transfer-lim-
ited regime [1,2] is governed by the ¯ow characteristics.

A horizontal reactor is superior to a vertical one in
its productivity and therefore is preferred in industrial

use. The uniformity of the ®lm, however, is hampered

by the reactant depletion due to the deposition process

along the ¯ow direction. Most of the work done on
improving the quality of the ®lm in a horizontal reac-

tor is to make the cross-sectional area of the reactor

vary in the streamwise direction. Gradual reduction of

the cross-sectional area by tilting the susceptor or the
top wall [3±6] helps as this accelerates the ¯ow and

e�ectively compensates the reactant depletion e�ects.

The perfect uniformity may be achieved when these
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two e�ects are exactly matched. Since the depletion is
not linear in the streamwise direction, simple tilting of

the planar wall would not be su�cient. Holstein [5]
suggested that the ®lm-thickness uniformity over a
large surface area can only be achieved by forming a

nonplanar susceptor or a top wall. As the curved sus-
ceptor is unthinkable, only choice we have is to make
the top wall nonplanar.

The objective of this paper is to ®nd an optimal
shape of a horizontal reactor: representing the top-wall
pro®le by a 4th-degree polynomial, the coe�cients of

which are determined to give the most uniform epitax-
ial layer possible. The procedure developed earlier [7,8]
that ®nds the optimal inlet conditions for a vertical
CVD reactor, has been modi®ed and used for this pur-

pose. The optimal shape has been obtained for various
operating conditions, i.e. ¯ow rates, buoyancy e�ects,
etc., and the resulting ®lm uniformity is found to be

quite satisfactory for all cases examined. The discus-
sions on the e�ects of the degree of basis function and
the o�-design point performance, which is very critical

for this shape optimization to be truly practical, are
also presented in the paper.

2. Analysis method

The ¯ow in a horizontal reactor may be considered
two-dimensional, if the reactor width is su�ciently

large compared to the height, and remains laminar for
most convenctional CVD operating conditions. For
two-dimensional, laminar ¯ows, the governing
equations of continuity, momentum, energy and con-

centration, in nondimensionalized variables u � u�=uin,
x � x �=h, y � y�=h, T � �T � ÿ TL�=�TH ÿ TL� and C �
C �=Cin are written as:

r � u � 0, �1�

u � ru � ÿrp� 1

Re
r2uÿ Gr

Re2
g

jgjT, �2�

u � rT � 1

Re Pr
r2T, �3�

u � rC � 1

Re Sc
r2C, �4�

where u is the velocity vector, p the hydrostatic press-

ure, T the temperature, and C the concentration of the
rate-limiting species. The superscript � denotes the
dimensional variable, the subscript in the inlet quantity

and h the reactor height. The dimensionless parameters
Re (=uinh/n ), Pr (=n/aT), Sc (=n/aM), are Reynolds
number, Prandtl number and Schmidt number, where

n, aT, aM are the kinematic viscosity, the thermal di�u-
sivity and the mass di�usivity, respectively. The tem-
perature of the reacting surface is maintained to be TH

while that of the remaining surfaces is kept cold at TL.
The buoyancy is taken into consideration within the
limits of incompressible ¯ow; The Boussinesq approxi-

mation has been invoked to obtain the momentum
equation in which the Grashof number Gr is given by
jgjb�THÿTL�h3=n2: The e�ects of thermal di�usion on

the growth rate are negligible in this ¯ow regime and
are ignored. A further justi®cation for omitting the
thermal di�usion e�ects may be found from the fact

that our interest in this study lies primarily in the
growth-rate uniformity, which is reported to be insensi-
tive to the thermal di�usion even when the growth rate
gets a�ected noticeably [6].

The schematic of a horizontal CVD reactor is shown
in Fig. 1. The length of the substrate on which the de-
position takes place is Ls. However, the wafers are

placed on only part of that, i.e. Lw (<Ls) to avoid the
de®nite discontinuity at both ends of the reacting sur-
face where the growth rate reaches maximum or mini-

mum [4]. The inlet/exit of the computational domain is
placed at a distance Li/Le upstream/downstream of the
substrate.
The following boundary conditions for u, T, and C

are speci®ed along the respective boundaries:

inlet (given):
ux � 6uin�1ÿ y�y, uy � 0,

T � 0, C � 1,
�5�

exit:
@ux
@x
� @uy
@x
� @T

@x
� @C

@x
� 0,

@p

@x
� const,

�6�

solid surface: ux � uy � @p

@n
� 0,

T � 1, C � 0 �substrate�,

T � 0,
@C

@n
� 0 �other surfaces�:

�7�

The vanishing concentration on the substrate is due

Fig. 1. Schematic of a horizontal reactor.
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to the deposition that accompanies chemical reaction
[4±8].

Chemical deposition phenomena involve hundreds
of reaction steps and chemical species. However, it suf-
®ces to consider only the group III containing species,

e.g. Ga(CH3)3 (TMG, tri-methyl gallium) for GaAs
epitaxial ®lm growth, in the mass-transfer-limited
regime [2]. Using the one-species model, the ®lm

growth rate is expressed by Fick's law as

G � � aM
@C �

@y�
MF

rF,
�8�

where MF is the molecular weight and rF the density
of the growing solid. The nondimensionalization by
G � G ��hrF=CinaMMF� results in G � @C=@y in that

the growth rate is identical to the normal concen-
tration gradient on the substrate.
The SIMPLE-based ®nite volume method developed

earlier for axisymetric ¯ows [8] is extended to solve the
governing equations. The reactor shape being opti-
mized is ®tted by a colocated nonorthogonal general

grid. The di�usive derivatives in the equations are dis-
cretized by the central di�erencing while the convective
derivatives are done by QUICK scheme [9] to preserve
second-order accuracy. The process is iterative and the

solution is considered to have converged when the sum
of the residual over the entire domain in each equation
becomes less than 10ÿ5.

3. Optimization technique

The cost function, a measure of the spatial nonuni-
formity of the growth rate on wafers, is de®ned as:

E �
��

Aw

�Gÿ �G�2 dA= �G
2
Aw

�1=2

, �9�

where G
-
is the average growth rate and Aw is the area

on which wafers are distributed.

The segment of the top wall to be modi®ed is rep-
resented by a linear combination of Chebyshev poly-
nomials j(x ) as:

h�x� �
XN
k�0

akjk�x� �10�

where h(x ) represents the height at x and N the num-
ber of the basis functions; the task becomes to ®nd the

set of coe�cients ak that minimizes the cost function
E. This approach, called reduced basis method [10], is
e�cient in ®nding an approximate optimal state and

thus is widely used in many engineering applications,
e.g. designing an optimal airfoil [11].
The procedure to determine ak that gives minimum

E could be time-consuming as the link between the
two is highly nonlinear Navier±Stokes equations. An

e�cient scheme is laid out in Cho et al. [8] and a brief
description is given below:
The growth rate G(a) near a0 may be written as

G�a�1G�a0� � @G
@a
� da, �11�

where a=a0+da. Using the random search technique
[10], da is sought to make E minimum within the speci-
®ed move limit. The region inside the move limit is

where Eq. (11) warrants su�cient accuracy. Once the
move limit is reached, new ¯ow analysis for each ak is
performed to obtain @G/@ak and the process continues.
Although an additional integration of Eq. (9) is

involved, which would have been omitted if the Taylor
expansion (11) is used directly for E, the route
described above was found to be more e�cient [8],

since G re¯ects the ¯ow ®eld better than E and thus a
larger move limit can be taken.
The optimal state is considered reached when the

relative variation of the cost function becomes less
than 10ÿ3. The computation time may be greatly
reduced if the optimal pro®le of the ®rst degree is

obtained ®rst and used as an initial condition. Ap-
proximately 10±15 iterations, each of which consists of
5 ¯ow analyses, are needed to arrive at the ®nal shape.
The whole process takes about 4.5 h on a 233 MHz

Pentium PC for Re=40.

4. Results and discussions

Before tackling the optimization problem, the ¯ow
solver is veri®ed against the measured data [12] taken
from a horizontal reactor of constant cross-section.

The epitaxial ®lm growth rate along the substrate
obtained with a nonuniformly distributed 110 � 40
grid is compared in Fig. 2. The excellent agreement

seen in Fig. 2 con®rms that the code accurately pre-
dicts the epitaxial growth rate and is ®t to be used in
the present optimization process.

Owing to Fotiadis et al. [13], Pr and Sc for H2 and
Ga(CH3)3 as the working ¯uid (carrier gas) and the
reactant gas at 900 K and 0.1 atm come out to be 0.7
and 2.33 since n=7� 10ÿ3, aT=1� 10ÿ2 and aM=3�
10ÿ3 m2/s. A thorough grid dependency test proves
that a nonuniformly distributed 100 � 40 grid ade-
quately resolves the ¯ow ®eld. Fig. 3 presents a typical

grid; it should be noted that a new grid is generated
every time when the shape has been modi®ed. It is also
veri®ed that enlarging the computational domain or

tightening the convergence criterion made little di�er-
ence in growth rate distribution.
Various cases for di�erent Reynolds numbers, ther-

W.K. Cho, D.H. Choi / Int. J. Heat Mass Transfer 43 (2000) 1851±1858 1853



mal conditions, and substrate lengths examined in the
present study are summarized in Table 1. The resulting

cost function and the mean growth rate are also tabu-
lated for both before and after optimization; we will get
back to this later in the paper. The ®rst series of calcu-

lations is performed for the computational domain that
extends from x=ÿ2 to 6 with Ls=4 (ÿ0.5 R x R 3.5)

and Lw=3 (0 R x R 3). The length and the position of
the top-wall segment that is being optimized are

aligned with those of the substrate on the ¯oor. The
reactor height beyond the end of this segment is con-

stant to the exit and comes out as part of the solution.
Fig. 4 shows the concentration ®elds for Re = 40

before and after the shape optimization. It is seen
from the ®gure that the concentration boundary layer

thickens rapidly for an unoptimized reactor while it
remains much the same for the optimized one. The

thickening concentration layer makes the deposition
rate drop o� rather quickly as illustrated in Fig. 5,

whereas the right amount of ¯ow acceleration due to
the cross-sectional area reduction for the optimal reac-

tor keeps the layer and thus the growth rate fairly con-
stant along the substrate. An almost perfect uniformity
is seen to be realized by modifying the reactor shape.

The result for the reactor, whose top wall is tilted by
an optimal angle, is also compared in Fig. 5. Although

the improvement gained is substantial, it is far from

being uniform as pointed out in Holsteins et al. [5].

Calculations for the unoptimized shape were repeated

with coarser (76 � 33) and ®ner (156 � 56) grids, and

the results are plotted together in Fig. 5. No discern-

able di�erence among the three is noticed and it con-

®rms that the present grid is su�ciently ®ne to resolve

the ¯ow ®eld accurately.

The cost function given in Table 1 demonstrates that

about a 40-fold improvement in uniformity has been

achieved for all three Reynolds number cases tested. It

is also important to note that the Reynolds number

e�ects on uniformity are not signi®cant and the depo-

sition e�ciency too is improved by this optimization as

the mean growth rate G
-
is more than doubled after the

shape has been modi®ed.

The optimal reactor shapes for di�erent Reynolds

number cases are presented in Fig. 6. The general

slope of the top wall is steeper for Re = 10 than for

the other higher Re cases to compensate for the

adverse di�usion e�ects: stronger di�usion enhances

deposition earlier on and leaves less reactant gas for

downstream use. It is important to note that the opti-

mal shape remains unchanged when going from Re 20

to 40. To put this in better perspective, o�-design-

Fig. 3. Typical computational grid (110� 40).

Fig. 2. Growth-rate distribution along the susceptor.

Table 1

Cost function and growth rate for various operating con-

ditions

Lw Re Gr/Re 2 E (�100) G
-

UNa OPb UNa OPb

3 10 0 20.8 0.386 2.07 4.49

3 20 0 19.8 0.335 2.69 5.84

3 40 0 19.3 0.321 3.47 7.72

3 10 30 31.9 0.757 2.17 4.58

3 10 40 34.5 0.886 2.24 4.61

3 10 50 36.4 1.01 2.31 4.64

6 40 0 25.2 0.910 2.92 6.56

a Unoptimized.
b Optimized.
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point performance of the optimal reactor for Re = 40

is examined for 10 R Re R 100. The cost function

given in Table 2 exhibits that more than ten-fold

improvement in uniformity over the unoptimized reac-

tor is still achieved for Rer 20. Even when Re = 10,

which is the worst case among the tested, the uniform-

ity is improved about three times. This is very encoura-

ging since a reactor, which is designed for one speci®c

condition, is e�ective for a wide range of ¯ow rates

and makes the shape optimization even more practical.

Less than 2% deviation in uniformity for 20 R Re R
100 is quite remarkable considering that the cost func-

tion of a ®lm grown in a planar top wall reactor with

optimal tilt angle is of an order of 5% (see Table 3 or

Ref. [5]).

Fig. 4. Concentration ®elds for Re=40. (a) Unoptimized; (b) optimized (linear function); (c) optimized (4th-degree polynomial).

Fig. 5. Growth-rate distributions with and without optimiz-

ation. Fig. 6. Optimal reactor shapes for various ¯ow conditions.

Table 2

O�-design-point performance of the optimal reactor for Re=

40: E (�100)

Re 10 20 40a 100

Optimal reactor for Re=40 7.96 1.17 0.321 1.46

Unoptimized reactor 20.8 19.8 19.3 18.9

a Design point.

W.K. Cho, D.H. Choi / Int. J. Heat Mass Transfer 43 (2000) 1851±1858 1855



To check the completeness of the basis function, the
number of the basis functions, N in Eq. (10), is varied

from 0 to 5: N = 0 signi®es the unoptimized reactor

whereas N = 5 means that the top wall is approxi-
mated by a 5th-degree polynomial. Table 3 compares

the cost function for these cases at Re = 40. It is safe
to conclude from the table that the 3rd- or 4th-degree

polynomial is adequate to approximate the pro®le as

the additional gain obtained when using a higher-
degree polynomial is not signi®cant. Of course, one

can readily go to a higher-degree polynomial whenever

it becomes necessary.

A large temperature di�erence commonly exists in
the ¯ow ®eld due to uneven heating for spatially selec-

tive deposition. This induces secondary ¯ow and, as
the convection parameter Gr/Re 2 increases, the poten-

tially detrimental (to the deposition process) recircula-

tion region(s) may develop [14]. The ¯ow
characteristics for Re = 10 and Gr/Re 2=50 in an

unoptimized reactor are depicted in Fig. 7. Two separ-

ation bubbles (vortices) are seen to form along the
reactor walls near both ends of the substrate (Fig. 7a),

where the wall temperature goes up or down discon-

tinuously. The front bubble pushes the ¯ow downward

while the rear one does the opposite; as a results, the

concentration layer becomes thinner/thicker in the

upstream/downstream region than would be without

these e�ects as is presented in Fig. 7c. The growth rate

shown in Fig. 8 exhibits the trend that the uniformity

deteriorates further as Gr/Re 2 increases. However,

after the shape has been optimized, the growth rate

becomes quite uniform regardless of Gr/Re 2 as plotted

in the ®gure (also in Table 1). Fig. 9 presents the opti-

mal shape and corresponding ¯ow characteristics for

Re = 10 and Gr/Re 2=50: the vortices have disap-

peared completely, and the temperature and the con-

centration ®elds look pretty much evenly strati®ed.

As pointed out earlier in this paper, one important

reason for using the reactor of horizontal type is its

high throughput. Obviously, it is advantageous to

make the reactor as long as possible. To check whether

the optimization can be as e�ective for a longer sub-

strate, we doubled Lw (0 R x R 6.0) and repeated the

analysis for Re = 40. The computational domain and

Ls were increased accordingly. The resulting reactor

shape and the growth-rate distribution are shown in

Fig. 10. The uniformity is still very satisfactory: it is a

little wigglier than that of the shorter reactor presum-

ably due to the single polynomial approximation of

the longer top wall segment. The mean growth rate is

Table 3

Cost function vs. the number of basis functions for Re=40

N 0 1 2 3 4 5

E (�100) 19.3 5.65 2.00 0.776 0.321 0.145

Fig. 7. Characteristics of mixed convection ¯ow (Gr/Re 2=50) in an unoptimized reactor. (a) Streamlines; (b) temperature ®eld; (c)

concentration ®eld.
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about 15% less than that of the shorter reactor (see

Table 1) and the ¯ow rate must be increased to obtain

the comparable growth rate. The fact is that the op-

timization works even for this length. It poses an inter-

esting new problem that the optimal length should

exist and how it can be determined. No attempt has

been made in this regard including what a plausible

cost function would be.

Finally, we examined how good the starting position

of the top-wall segment being modi®ed. We varied the

points from ÿ0.7 to ÿ0.3, and the cost function distri-
bution is presented in Fig. 11 for various Reynolds

numbers. The position that yields the smallest cost
function is indicated by the solid circle and appears to
be very close to the reference point ÿ0.5. This,

together with the observation that the cost function
does not vary rapidly in that neighborhood, suggests
that the present choice of the starting location is ade-

quate. The downstream movement of this optimal pos-
ition for Re=10 may be explained by the more active
deposition due to the stronger di�usion e�ects. By

delaying the starting point, the e�ect is lessened and
the uniformity is improved.

5. Conclusions

An optimal shape for the horizontal reactor, is suc-
cessfully obtained by the optimization scheme devel-
oped in this study. The 4th-degree polynomial that
approximates the top-wall pro®le is determined to pro-

duce the most uniform epitaxial layer possible. A series
of calculations has been carried out for various Re, Gr
combinations, and for di�erent substrate lengths. The

results for all the cases tested are quite remarkable and
satisfactory: The modi®ed shape is seen to suppress the
buoyancy driven recirculation e�ectively and some 30-

fold improvement in uniformity has been achieved.
The fact that the shape dose not change much for a

Fig. 8. Growth-rate distributions for varying degree of buoy-

ancy e�ects.

Fig. 9. Characteristics of mixed convection ¯ow (Gr/Re 2=50) in an optimal shape reactor. (a) Streamlines; (b) temperature ®eld;

(c) concentration ®eld.
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wide range of Reynolds numbers is also very encoura-
ging as it makes the present optimization concept

economically feasible.
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